飞秒激光直写铜微电极研究

廖嘉宁,王欣达,周兴汶,李立航,郭伟,彭鹏* 北京航空航天大学机械工程及自动化学院,北京 100191

摘要 采用飞秒激光直写技术在预涂覆廉价铜离子涂层的柔性基体上通过激光还原得到纳米铜颗粒并原位连接 形成导电结构,成功制得了具有优良导电性能的铜微电极。研究了不同激光功率及扫描速率对微电极形貌结构、 导电性能的影响。结果表明:在不损伤基体的条件下,随着辐照激光能量密度增大,铜微电极的导电性能明显提 高;当激光功率为1210 mW、扫描速度为1 mm/s时,所制备的微电极的成分主要为铜,导电性能较好,方阻达到 2.74 Ω·sq⁻¹。该研究为发展低成本、高效率的柔性电极制造提供了一种新技术,并拓宽了纳米铜材料在电子行业 的应用范围。

关键词 激光技术;微纳结构;原位还原;纳米连接;柔性电极 中图分类号 TN249 **文献标识码** A

doi: 10.3788/CJL201946.1002013

Femtosecond Laser Direct Writing of Copper Microelectrodes

Liao Jianing, Wang Xinda, Zhou Xingwen, Li Lihang, Guo wei, Peng Peng* School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China

Abstract Femtosecond laser direct writing technique is used to fabricate microelectrodes on flexible substrates with a cheap copper ion pre-coating. The copper nanoparticles are obtained using laser-induced reduction and *in situ* bonding, and the as-written copper electrodes exhibit excellent electrical conductivity. Further, the effects of laser power and scan speed on the microstructure and electrical conductivity of the electrodes are studied. The results denote that the conductivity generally increases with the increase of laser energy density. The obtained copper electrodes are mostly network-like metallic copper and exhibit the lowest sheet resistance of 2.74 $\Omega \cdot sq^{-1}$ at a laser power of 1210 mW and a scan speed of 1 mm/s. This research provides a new technique for developing low-cost and high-efficiency flexible devices, which can benefit the application of copper nanomaterials in the electrodes industry. **Key words** laser technique; micro/nano structure; *in-situ* reduction; nano connection; flexible electrode **OCIS codes** 140.3390; 140.3450; 230.4000

1 引 言

柔性电子器件作为一种新兴的电子器件,相较 于传统的电子器件具有柔性化、成本低廉的优势,在 信息电子、能源储存等领域具有广阔的应用前 景^[1-4]。贵金属纳米材料因兼具良好的电学性能和 力学性能而成为柔性电极的潜在应用材料。此外, 铜由于其低廉的成本和优良的导电、导热性能而受 到广泛关注,但不稳定、易氧化的缺点制约了其在电 子器件中的进一步应用。研究铜颗粒连接和导电机 理对于从新角度设计铜油墨和柔性电极的制造工艺 就显得尤为重要。

激光直写技术兼具直写技术和激光加工技术的 优点,较光刻技术、丝网印刷、喷墨打印等传统加工 技术而言具有成本低、操作简单、加工精度高的优 点,在柔性电子器件的制造中显示出巨大的潜 力^[5-6]。飞秒激光相较于其他光源,具有脉冲持续时 间超短、平均功率低但峰值功率大的特点,在制备金 属微纳结构方面具有广阔的应用前景^[7-8]。飞秒激 光聚焦可使激光只在焦点附近极小的区域内达到多

* E-mail: ppeng@buaa.edu.cn

收稿日期: 2019-04-23; 修回日期: 2019-05-30; 录用日期: 2019-06-17

基金项目:国家自然科学基金(51605019)、国家重点研发计划重点专项(2017YFB1104900)、中央高校基本业务费(YWF-19-BJ-J-174)

光子吸收阈值,并且其在与材料作用时,非线性效应 占主导,热作用非常小[6-9]。基于此,采用飞秒激光 可在尽量不产生热影响区的情况下,在柔性基体上 实现微结构的便捷、可选区精细加工。Arakane 等[10]采用飞秒激光诱导还原氧化铜纳米颗粒成功 制备了富铜微结构,并通过激光直写技术实现了图 案化加工。Bai 等^[11] 直接用半导体激光还原铜离子 薄膜,在聚对苯二甲酸乙二醇酯(PET)上得到了测 量手指弯曲的铜微电极。Fan 等^[12] 通过调控飞秒 激光脉冲能量、脉冲输入数及脉冲输入方式等在铜 表面制备出了不同形貌的微结构。Liu 等^[13] 通过调 控飞秒激光的扫描速度及扫描间隔,在铜基板表面制 备得到了一系列具有结构色及超疏水性的多功能表 面。Cheng 等^[14]报道了飞秒激光脉冲烧结铜纳米颗 粒的理论和实验结果。可见,采用飞秒激光对铜离子 进行还原得到富铜颗粒后,可通过对激光参数的调节 实现颗粒间的连接,获得良好的导电性。然而,目前 关于飞秒激光辐照下铜的还原机理以及激光参数对 铜微电极导电性能的影响规律等还未明晰。

本文采用飞秒激光对预置于柔性基体上的铜离 子涂层进行激光直写,通过原位还原并烧结连接得 到网络状金属铜,完成了导电结构的一步制造。研 究了激光参数对所形成的铜微电极的物相成分、形 貌结构及导电性能的影响。

2 实验部分

2.1 原料及试剂

实验所需溶液由三水硝酸铜[Cu(NO₃)₂・ 3H₂O]、聚乙烯吡咯皖酮(PVP)、聚乙二醇(PEG) 构成。所用化学药品均为分析纯,全部购买自国药 集团化学试剂有限公司。实验用水为去离子水。

2.2 仪器设备

所用激光器为蓝宝石固体飞秒激光器 (Coherent,美国),其输出激光的波长为800 nm,重 复频率为1 kHz,脉宽为50 fs;采用光学显微镜 [OM, Carl Zeiss(Axio Scope.A1),德国]、扫描电 子显微镜(SEM, Merlin Compact,德国)观察结构 的形貌;通过X射线衍射分析仪(XRD, Rigaku D/ max,日本)表征结构的成分,XRD 的测试条件为铜 靶,电压为20 kV,电流为200 mA,扫描速度为 8(°)/min,扫描范围为30°~80°;通过数字源表 (Keithley, 2400,美国)测量所得结构的电学性能。

2.3 实验原理及步骤

本实验所用原料为 PEG、PVP 及 Cu(NO3)2·

3H₂O。PEG 经光分解后产生羟基自由基。在激光 辐照及羟基自由基的作用下,PVP转化为亚甲基结 构、甲胺及丙酸。其中,丙酸可进一步分解为甲酸, 从而将 Cu²⁺还原为铜单质^[15-16]。实验具体工艺流 程示意如图 1(a) 所示。将一定量的 $Cu(NO_3)_2$ • 3H₂O、PVP 和 PEG 按 3:1:1的体积比配制成溶液。 利用迈耶棒涂法将配制而成的铜离子溶液(200 µL) 均匀地涂于聚碳酸酯柔性基底(PC,2.5 cm×5 cm) 表面,然后置于50℃的恒温干燥箱中干燥1h,形成 铜离子涂层。采用飞秒激光对铜离子涂层进行扫 描,以得到所需的图案。随后采用去离子水清洗试 样,以去除未被激光辐照的部分。图1(b)为实验制 备得到的铜离子涂层的表面形貌数码照片图。飞秒 激光盲写系统原理图如图 1(c) 所示,激光经由反射 镜和凸透镜后聚焦在高精度的一维移动平台上,通 过计算机程序对一维平台的移动路径进行控制,使 激光在铜离子薄膜上进行扫描以得到铜微结构。其 中,所用聚焦物镜的数值孔径(NA)为 0.023,工作 距离为19 cm。图 1(d)为清洗后的铜微电极的数码 照片图,可见:在所选择的激光参数下,可以获得均 匀连续的铜结构。

3 结果与讨论

3.1 激光参数对铜微电极导电性能的影响

激光参数的变化对铜微电极导电性能有很大影响。激光功率、扫描速率等参数的变化将会引起辐照区域激光能量密度的变化,从而影响铜离子的还原与连接,使铜微电极呈现不同的导电性。

3.1.1 激光功率对导电性能的影响

控制飞秒激光的扫描速度为 3 mm/s,离焦量 为 6 cm,改变激光功率,分别取 456,503,640,880, 980,1210,1580 mW,探究激光功率对铜微电极导 电性能的影响。图 2(a)为铜微电极平均线宽随激 光功率变化的曲线,可见:随着功率增大,微电极线 宽逐渐从 457 µm 增加至 1440 µm。功率越大,相同 时间内前驱体吸收的能量越多,发生还原的铜离子 增多,得到的铜纳米颗粒越多^[17]。激光能量密度在 光斑范围内具有高斯分布现象,表现为光斑边缘处 的能量密度较低,而光斑中心处的能量较高^[18]。当 激光光斑直径恒定时,随着激光功率增大,光斑边缘 的能量密度变大,烧结成线的区域扩大,从而导致所 得图案线宽增加。图 2(b)为所制备的铜微电极方 阻随激光功率变化的曲线图,可以看出:在较低的功 率下(不大于640mW),所制备的微电极的方阻较

图 1 铜微电极的制备流程。(a)涂层制备及激光扫描示意图;(b)铜离子涂层表面形貌的数码照片图; (c)激光直写系统原理图;(d)清洗后的铜微电极数码照片图

Fig. 1 Manufacting of copper microelectrodes. (a) Diagram of coating preparation and laser scanning; (b) digital photo of copper ion coating surface topography; (c) schematic of laser direct writing system; (d) digital photo of copper electrode after cleaning

Fig. 2 Copper electrode wire width and sheet resistance versus incident laser power. (a) Wire width; (b) sheet resistance

大(MΩ•sq⁻¹量级),几乎不导电;而当功率大于 880 mW后,所制备的微电极均具有较好的导电性 能。随着激光功率增大,辐照区域上的激光能量密 度增大,促使 PVP 和 PEG 分解,使更多的铜离子被 还原为铜纳米颗粒^[19-20];激光辐照过程中产生的光 热作用促使纳米颗粒原位连接形成导电结构,从而使 铜微电极的方阻降低。由图 2(b)可知:当辐照激光 功率为 880,1210,1580 mW时,所制备铜微电极的方 阻分别为 11.87,5.75,4.98 Ω •sq⁻¹;当激光功率为 1580 mW时,铜微电极的方阻最低,但其柔性基体发 生了不可逆的弯曲变形。

3.1.2 激光扫描速度对导电性能的影响

控制激光功率为 1210 mW,离焦量为 6 cm,更 改扫描速度以进一步探究其对所制备微电极导电性 能的影响,从而优化微电极的制备工艺。图 3 给出 了所选功率下扫描速度与铜微电极方阻的关系,可 看出:扫描速度在 1~6 mm/s 范围内时,铜微电极 的方阻随着扫描速度的降低而减小;当扫描速度低 于 5 mm/s 时,所制备的铜微电极具有较好的导电 性能,其方阻均低于 13 $\Omega \cdot sq^{-1}$,且当扫描速度为 1 mm/s时,方阻达到最低,为 2.74 $\Omega \cdot sq^{-1}$;然而当 扫描速度上升至 6 mm/s 时,由于单位面积上激光 辐照的能量不足以将大量的铜离子还原为铜单质, 使得微电极的方阻大幅增大。实验所制备的铜微电 极的方阻最低为 2.74 $\Omega \cdot sq^{-1}$,其导电性能较光脉冲 辐照连接的铜纳米线导电薄膜(22.9 $\Omega \cdot sq^{-1}$)^[21]及 有机物模板法制备的铜网电极(28.7 $\Omega \cdot sq^{-1}$)^[22]有 较大提高。

3.2 铜微电极的物相及微观结构对电性能的影响

综上可知,激光参数的变化对所制备微电极的

scanning speed

导电性能有很大影响。激光参数的变化将引起辐照 区域激光能量密度的变化,导致铜微电极的物相及 微观结构发生改变,使微电极呈现不同的导电性。 控制扫描速度为 3 mm/s,探究不同功率下制备得 到的铜微电极物相成分的变化。图 4 为 640,880, 1580 mW 三种激光功率下铜微电极的 XRD 图谱, 可见:在这三种功率下,铜微电极显示为不同比例的 金属铜相及 Cu₂O相;在 43.3°、50.4°和 74.1°处的三 个衍射峰分别对应于铜相的(111)、(200)和(220) 面,而在 36.6°、42.6°和 61.3°处的三个衍射峰分别属 于 Cu₂O^[23-24]。当激光功率为 640 mW 时,辐照区 域的能量密度低,部分 Cu²⁺ 被还原为 Cu⁺,铜微电 极主要含 Cu₂O 相,铜相几乎不可见;当激光功率为 880 mW 时,铜微电极主要含有 Cu₂O 及铜相,两相 的峰强均有所增加。飞秒激光的激光强度呈高斯分 布,使得激光焦点中心的能量密度较高,Cu²⁺被直 接还原为铜单质,而边缘处的能量密度较低,Cu²⁺ 被还原为Cu⁺。随着功率继续升高到1580 mW,铜 微电极主要含铜相,Cu₂O相的峰强降低,较多的 Cu²⁺被直接还原为铜单质,少部分被还原为Cu⁺。 这与铜微电极方阻随激光功率变化的关系基本一 致,随着功率增大,金属铜相的含量逐渐增多,微电 极的导电性能逐渐提高。

图 4 不同激光功率下制备的铜微电极的 XRD 图 Fig. 4 XRD patterns of copper electrodes prepared under different laser powers

激光功率的变化能显著影响 Cu 纳米颗粒的烧 结程度,从而影响铜微电极的微观结构,进而影响其 导电性能。如图 5 所示,在放大倍数为 1000 时,不 同激光功率下得到的铜微电极整体上很相似,均呈 三维网络状结构。结合上述对铜微电极物相成分的

图 5 不同激光功率下得到的铜微电极的 SEM 照片(插图为高倍 SEM 照片)。 (a) 456 mW;(b) 640 mW;(c) 880 mW;(d) 1580 mW

Fig. 5 SEM images of copper electrodes obtained under different laser powers (illustrations are high-resolution SEM images). (a) 456 mW; (b) 640 mW; (c) 880 mW; (d) 1580 mW

分析可知:在较低的激光功率下(不大于640 mW), 形成的网络主要为 Cu₂O 网络,使得微电极的方阻 较大,导电性能差;在 503 mW 及 640 mW 激光功 率下得到的铜微电极中,由于 Cu₂O 颗粒连接形成 大块的团聚体,而团聚体之间出现了较大空隙,因此 铜微电极的方阻增大;随着激光功率进一步增大,辐 照区域的激光能量密度增大,还原得到的铜纳米颗 粒增多。铜颗粒在受到激光辐照后,表面等离激元 效应引发颗粒间的直接互连,激光光热作用促使纳 米颗粒熔化结合,形成网状结构,提供导电通路,从 而提高了铜微电极的导电性^[25-26]。图 5(c)、(d)分 别为在880 mW和 1580 mW 功率下制备的铜微电 极的微观结构,可见,两者均为网络状结构,对其表 面进一步放大可发现 880 mW 功率下制备的铜微 电极的表面较 1580 mW 更为粗糙,且存在部分 Cu2 O,所以方阻较大。

4 结 论

本文利用飞秒激光直写技术直接从廉价铜离子 油墨出发,通过原位还原并连接铜纳米颗粒,成功制 备了具有良好导电性能的铜微电极。探究了激光参 数对铜微电极物相、微观形貌结构及导电性能的影 响,结果表明:在456~1580 mW 范围内,随着激光 功率增大,微电极的导电性能明显提高;在1~ 6 mm/s范围内,随着扫描速度的下降,微电极的方 阻降低。这是因为激光参数的变化会引起辐照区域 激光能量密度的变化,导致铜微电极的物相及微观 形貌结构发生改变,从而使微电极呈现出不同的导 电性。当激光功率为 1210 mW,扫描速率为 1 mm/s时,制备的铜微电极的方阻最低,为 2.74 Ω·sq⁻¹。飞秒激光原位还原并连接铜纳米颗 粒在制备柔性电极方面具有广阔的应用前景。

参考文献

- [1] Chen P, Chen H T, Qiu J, et al. Inkjet printing of single-walled carbon nanotube/RuO₂ nanowire supercapacitors on cloth fabrics and flexible substrates[J]. Nano Research, 2010, 3(8): 594-603.
- [2] Lee C Y, Wu G W, Hsieh W J. Fabrication of micro sensors on a flexible substrate [J]. Sensors and Actuators A: Physical, 2008, 147(1): 173-176.
- [3] Cheng Y T, Ho J, Wang C K, et al. Improvement of organic solar cells by flexible substrate and ITO surface treatments [J]. Applied Surface Science,

2010, 256(24): 7606-7611.

- [4] Sher C W, Chen K J, Lin C, et al. Large-area, uniform white light LED source on a flexible substrate [J]. Optics Express, 2015, 23 (19): A1167-A1178.
- [5] Hu A, Li R, Bridges D, et al. Photonic nanomanufacturing of high performance energy devices on flexible substrates [J]. Journal of Laser Applications, 2016, 28(2): 022602.
- [6] Zhou W P, Wang S T, Yu Y C, et al. Research progress in fabrication of embedded microball lenses, energy devices and biosensors by femtosecond laser direct writing[J]. Chinese Journal of Lasers, 2017, 44(1): 0102002.
 周伟平, 王树同, 于泳超, 等. 飞秒激光直写制备内 嵌微透镜、能源器件及生物传感器的研究进展[J].

嵌微透镜、能源器件及生物传感器的研究进展[J]. 中国激光, 2017, 44(1): 0102002.

- [7] Yu J, He S T, Song H Y, et al. Metal nanostructured film generated by femtosecond laser induced forward transfer [J]. Chinese Journal of Lasers, 2017, 44(1): 0102009.
 余佳,何书通,宋寰宇,等.飞秒激光前向转移诱导产生金属纳米结构薄膜[J].中国激光, 2017, 44(1): 0102009.
- [8] Qiao L L, Chu W, Wang Z, et al. Threedimensional microfabrication by shaped femtosecond laser pulses [J]. Acta Optica Sinica, 2019, 39(1): 0126012.
 乔玲玲,储蔚,王哲,等.基于整形飞秒激光脉冲的 三维微纳制备[J].光学学报, 2019, 39(1): 0126012.
- [9] Zheng C, Hu A M, Chen T, et al. Femtosecond laser internal manufacturing of three-dimensional microstructure devices[J]. Applied Physics A, 2015, 121(1): 163-177.
- [10] Arakane S, Mizoshiri M, Hata S. Direct patterning of Cu microstructures using femtosecond laserinduced CuO nanoparticle reduction [J]. Japanese Journal of Applied Physics, 2015, 54(6S1): 06FP07.
- [11] Bai S, Zhang S G, Zhou W P, et al. Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors [J]. Nano-Micro Letters, 2017, 9(4): 42.
- [12] Fan P X, Zhong M L, Bai B F, et al. Tuning the optical reflection property of metal surfaces via micronano particle structures fabricated by ultrafast laser [J]. Applied Surface Science, 2015, 359: 7-13.
- [13] Liu Y, Li S Y, Niu S C, et al. Bio-inspired micronano structured surface with structural color and anisotropic wettability on Cu substrate [J]. Applied Surface Science, 2016, 379: 230-237.

- [14] Cheng C W, Chen J K. Femtosecond laser sintering of copper nanoparticles [J]. Applied Physics A, 2016, 122(4): 289.
- [15] Peng P, Li L H, He P, et al. One-step selective laser patterning of copper/graphene flexible electrodes [J]. Nanotechnology, 2019, 30 (18): 185301.
- [16] Du C M, Lü L H, Zhang M X. Preparation of gold nanoparticles by femtosecond laser ablation in chloroauric acid trihydrate aqueous solution [J]. Chinese Journal of Lasers, 2017, 44(8): 0803003.
 杜传梅, 吕良宏, 张明旭. 飞秒激光烧蚀氯金酸水溶 液制备金纳米粒子[J]. 中国激光, 2017, 44(8): 0803003.
- [17] Liu S, Wang H, Zhang Y L. Processing precision of femtosecond laser induced silver nanowiring [J]. Chinese Journal of Lasers, 2017, 44(1): 0102007.
 柳森, 王欢, 张永来. 飞秒激光诱导金属银纳米布线 加工精度的研究[J]. 中国激光, 2017, 44(1): 0102007.
- [18] Liu W, Dou G B, Wang C Q, et al. Effect of defocus distance on morphology of Gaussian distributed laser induced forward transfer Cu film and mechanism analysis[J]. Chinese Journal of Lasers, 2013, 40(5): 0507001.

刘威, 窦广彬, 王春青, 等. 高斯分布激光散焦距离 对激光转印 Cu 薄膜形貌影响及机理分析[J]. 中国 激光, 2013, 40(5): 0507001.

[19] Lee H, Yang M Y. Effect of solvent and PVP on electrode conductivity in laser-induced reduction process[J]. Applied Physics A, 2015, 119(1): 317-323.

- [20] Ryu J, Kim H S, Hahn H T. Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics [J]. Journal of Electronic Materials, 2011, 40(1): 42-50.
- [21] Ding S, Jiu J T, Tian Y H, et al. Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air [J]. Physical Chemistry Chemical Physics, 2015, 17(46): 31110-31116.
- Zhou W X, Chen J, Li Y, et al. Copper mesh templated by breath-figure polymer films as flexible transparent electrodes for organic photovoltaic devices
 [J]. ACS Applied Materials & Interfaces, 2016, 8 (17): 11122-11127.
- Wang B Y, Yoo T H, Song Y W, et al. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering [J]. ACS Applied Materials & Interfaces, 2013, 5(10): 4113-4119.
- [24] Kang B, Han S, Kim J, et al. One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle[J]. The Journal of Physical Chemistry C, 2011, 115(48): 23664-23670.
- [25] Lin L C, Liu L, Peng P, et al. In situ nanojoining of Y- and T-shaped silver nanowires structures using femtosecond laser radiation [J]. Nanotechnology, 2016, 27(12): 125201.
- [26] Peng P, Hu A, Zhou Y. Laser sintering of silver nanoparticle thin films: microstructure and optical properties[J]. Applied Physics A, 2012, 108(3): 685-691.